All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overcoming the Challenges of Uncertainty in Forecasting Economic Time Series Through Convolutional Neural Networks and Other Intelligent Approaches

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F23%3A10253257" target="_blank" >RIV/61989100:27510/23:10253257 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-39777-6_61" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-39777-6_61</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-39777-6_61" target="_blank" >10.1007/978-3-031-39777-6_61</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overcoming the Challenges of Uncertainty in Forecasting Economic Time Series Through Convolutional Neural Networks and Other Intelligent Approaches

  • Original language description

    This article provides insights into the use of artificial neural networks (ANNs) and convolutional neural networks (CNNs) as the tools for forecasting economic time series, where uncertainty refers to incomplete information about the future. To improve the forecasting ability of CNN architectures and capture long-term dependencies in the input sequence we used the WaveNet models which dilate convolutions with skip connections in the input sequence. The residual blocks with skip connections are defined in a specific way that allows for easier information flow through the network while avoiding the vanishing gradient problem, making it a potential innovation in the field of deep learning. Another innovative aspect is the use one-hot encoding for the target sequences using categorical cross-entropy loss function.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems. Volume 759

  • ISBN

    978-3-031-39776-9

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    8

  • Pages from-to

    515-522

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Istanbul

  • Event date

    Aug 22, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article