All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toxicity of the airborne brake wear debris

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F17%3A86098440" target="_blank" >RIV/61989100:27640/17:86098440 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/17:86098440

  • Result on the web

    <a href="https://doi.org/10.4271/2016-01-1914" target="_blank" >https://doi.org/10.4271/2016-01-1914</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4271/2016-01-1914" target="_blank" >10.4271/2016-01-1914</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toxicity of the airborne brake wear debris

  • Original language description

    Particulate air pollution from road traffic currently represents significant environmental and health issue. Attention is also paid to the “non-exhaust pollution sources,” which includes brake wear debris. During each brake application, the airborne and nonairborne particles are emitted into the environment due to wear. High temperatures and pressures on the friction surfaces initiate chemical and morphological changes of the initial components of brake pads and rotating counterparts. Understanding of impact of matter released from brakes on health is vital. Numerous studies clearly demonstrated that particulate matter caused potential adverse effects related to cytotoxicity, oxidative stress, stimulation of proinflammatory factors, and mutagenicity on the cellular level. This paper compiles our main results in the field of genotoxicity, immunotoxicity, and aquatic toxicity of airborne brake wear particles. The brake wear particles were generated using an automotive brake dynamometer. In vitro human peripheral blood cell model was used for the genotoxicity and immunotoxicity. Assessment of aquatic toxicity was performed on the green algae Raphidocelis subcapitata. Obtained results point to potency of toxicity related to the generated airborne brake wear debris.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SAE International journal of materials and manufacturing

  • ISSN

    1946-3979

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    19-25

  • UT code for WoS article

    000408312300002

  • EID of the result in the Scopus database