All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sequential Extraction Resulted in Similar Fractionation of Ionic Zn, Nano- and Microparticles of ZnO in Acidic and Alkaline Soil

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F20%3A10247207" target="_blank" >RIV/61989100:27640/20:10247207 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1999-4907/11/10/1077" target="_blank" >https://www.mdpi.com/1999-4907/11/10/1077</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/f11101077" target="_blank" >10.3390/f11101077</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sequential Extraction Resulted in Similar Fractionation of Ionic Zn, Nano- and Microparticles of ZnO in Acidic and Alkaline Soil

  • Original language description

    The evaluation of nanoparticle bioavailability or the bioavailability of dissolved elements by direct measurement through plant uptake is a strenuous process. Several multi-step sequential extraction procedures, including the BCR sequential extraction procedure, have been created to provide potential accessibility of elements, where real soil-plant transfer can be problematic to implement. However, these have limitations of their own based on the used extractants. For the purposes of our research, we enriched two soils: an untilted forest soil with naturally acidic pH and a tilted agricultural soil with alkaline pH by three Zn forms-ionic Zn in the form of ZnSO4, ZnO nanoparticles (ZnO NP) and larger particles of ZnO (ZnO B)-by batch sorption. We then extracted the retained Zn in the soils by BCR sequential extraction procedure to extract three fractions: ion exchangeable, reducible, and oxidizable. The results were compared among the soils and a comparison between the different forms was made. Regardless of the difference in soil pH and other soil properties, ZnO NP, ZnO B, and ionic Zn showed little to no difference in the relative distribution between the observed soil fractions in both forest soil and agricultural soil. Since ionic Zn is more available for plant uptake, BCR sequential extraction procedure may overestimate the easily available Zn when amendment with ionic Zn is compared to particulate Zn. The absence of a first extraction step with mild extractant, such as deionized water, oversimplifies the processes the particulate Zn undergoes in soils.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40102 - Forestry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forests

  • ISSN

    1999-4907

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000585414200001

  • EID of the result in the Scopus database

    2-s2.0-85092889752