All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nanoscale Assembly of BiVO4/CdS/CoOx Core-Shell Heterojunction for Enhanced Photoelectrochemical Water Splitting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10247717" target="_blank" >RIV/61989100:27640/21:10247717 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15640/21:73610980

  • Result on the web

    <a href="https://www.mdpi.com/2073-4344/11/6/682" target="_blank" >https://www.mdpi.com/2073-4344/11/6/682</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/catal11060682" target="_blank" >10.3390/catal11060682</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nanoscale Assembly of BiVO4/CdS/CoOx Core-Shell Heterojunction for Enhanced Photoelectrochemical Water Splitting

  • Original language description

    Porous BiVO4 electrodes were conformally decorated with CdS via a chemical bath deposition process. The highest photocurrent at 1.1 V vs. RHE was achieved for a BiVO4/CdS composite (4.54 mA cm(-2)), compared with CdS (1.19 mA cm(-2)) and bare BiVO4 (2.1 mA cm(-2)), under AM 1.5G illumination. This improvement in the photoefficiency can be ascribed to both the enhanced optical absorption properties and the charge separation due to the heterojunction formation between BiVO4 and CdS. Furthermore, the BiVO4/CdS photoanode was protected with a CoOx layer to substantially increase the photostability of the material. The new BiVO4/CdS/CoOx nanostructure exhibited a highly stable photocurrent density of similar to 5 mA cm(-2). The capability to produce O-2 was locally investigated by scanning photoelectrochemical microscope, which showed a good agreement between photocurrent and O-2 reduction current maps. This work develops an efficient route to improve the photo-electrochemical performance of BiVO4 and its long-term stability.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000416" target="_blank" >EF15_003/0000416: Advanced Hybrid Nanostructures for Renewable Energy Applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Catalysts

  • ISSN

    2073-4344

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    682

  • UT code for WoS article

    000666931300001

  • EID of the result in the Scopus database

    2-s2.0-85106557762