Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10247754" target="_blank" >RIV/61989100:27640/21:10247754 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15640/21:73607377
Result on the web
<a href="https://reader.elsevier.com/reader/sd/pii/S2211285521000860?token=46E204FFF334945BD875CAEBB7DE65F681610E3A2AF4F95B3D4CDF6DF7E145A4707D3420181A47F9557C618FDF6BA491&originRegion=eu-west-1&originCreation=20210827203134" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S2211285521000860?token=46E204FFF334945BD875CAEBB7DE65F681610E3A2AF4F95B3D4CDF6DF7E145A4707D3420181A47F9557C618FDF6BA491&originRegion=eu-west-1&originCreation=20210827203134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nanoen.2021.105828" target="_blank" >10.1016/j.nanoen.2021.105828</a>
Alternative languages
Result language
angličtina
Original language name
Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays
Original language description
Plasmonic-based solar absorbers exhibit complete light absorption in a sub-?m thickness, representing an alternative to mm-thick carbon-based materials most typically employed for solar-driven steam generation. In this work, we present the scalable fabrication of ultrathin plasmonic titanium nitride (TiN) nanocavity arrays that exhibit 90% broadband solar light absorption within - 250 nm from the illuminated surface and show a fast non-linear increase of performance with light intensity. At 14 Suns TiN nanocavities reach - 15 kg h?1 m?2 evaporation rate and - 76% thermal efficiency, a steep increase from - 0.4 kg h-1 m? 2 and - 20% under 1.4 Suns. Electromagnetic, thermal and diffusion modeling of our system reveals the contribution of each material and reactor component to heat dissipation and shows that a quasi-two-dimensional heat dissipation regime significantly accelerates water evaporation. Our approach to ultrathin plasmonic absorbers can boost the performance of devices for evaporation/desalination and holds promise for a broader range of phase separation processes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21000 - Nano-technology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nano Energy
ISSN
2211-2855
e-ISSN
—
Volume of the periodical
83
Issue of the periodical within the volume
May
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
105828
UT code for WoS article
000640487600005
EID of the result in the Scopus database
2-s2.0-85100443340