All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Advances in Use of Nanomaterials for Musculoskeletal Regeneration

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10248235" target="_blank" >RIV/61989100:27640/21:10248235 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27730/21:10248235

  • Result on the web

    <a href="https://www.mdpi.com/1999-4923/13/12/1994" target="_blank" >https://www.mdpi.com/1999-4923/13/12/1994</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pharmaceutics13121994" target="_blank" >10.3390/pharmaceutics13121994</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Advances in Use of Nanomaterials for Musculoskeletal Regeneration

  • Original language description

    Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21000 - Nano-technology

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008441" target="_blank" >EF17_049/0008441: Innovative therapeutic methods of musculoskeletal system in accident surgery</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pharmaceutics

  • ISSN

    1999-4923

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    48

  • Pages from-to

  • UT code for WoS article

    000736750600001

  • EID of the result in the Scopus database

    2-s2.0-85120787631