Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27650%2F23%3A10254087" target="_blank" >RIV/61989100:27650/23:10254087 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s42004-023-01077-z" target="_blank" >https://www.nature.com/articles/s42004-023-01077-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s42004-023-01077-z" target="_blank" >10.1038/s42004-023-01077-z</a>
Alternative languages
Result language
angličtina
Original language name
Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes
Original language description
Feedstock properties play a crucial role in thermal conversion processes, where understanding the influence of these properties on treatment performance is essential for optimizing both feedstock selection and the overall process. In this study, a series of van Krevelen diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the products obtained from six commonly used thermal conversion techniques: torrefaction, hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis, and gasification. Machine learning methods were employed, utilizing data, methods, and results from corresponding studies in this field. Furthermore, the reliability of the constructed van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen diagrams developed in this work systematically provide visual representations of the relationships between feedstock and products in thermal conversion processes, thereby aiding in optimizing the selection of feedstock and the choice of thermal conversion technique
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications Chemistry
ISSN
2399-3669
e-ISSN
2399-3669
Volume of the periodical
6
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
—
UT code for WoS article
001122502600001
EID of the result in the Scopus database
2-s2.0-85179331588