Remaining Fatigue Lives of Similar Surface Flaws in Accordance With Combination Rules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27690%2F17%3A10238716" target="_blank" >RIV/61989100:27690/17:10238716 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Remaining Fatigue Lives of Similar Surface Flaws in Accordance With Combination Rules
Original language description
When multiple flaws are detected in structural components, the remaining lives of the components are estimated by fatigue flaw growth calculations using combination rules in fitness-for-service (FFS) codes. Many FFS codes provide combination rules for multiple flaws; however, these rules differ significantly among the various codes. Fatigue flaw growths for two similar adjacent surface flaws in a flat plate subjected to a cyclic tensile stress were obtained by numerical calculations using these different combination rules. In addition, fatigue flaw growths taking into account the interaction effect between the two similar flaws were conducted by the extended finite-element method (X-FEM). The calculation results show that the fatigue lives calculated by the X-FEM are close to those obtained by the American Society of Mechanical Engineers (ASME) Code. Finally, it is noted that the combination rule provided by the ASME Code is appropriate for fatigue flaw growth calculations.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
20301 - Mechanical engineering
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pressure Vessel Technology, Transactions of the ASME
ISSN
0094-9930
e-ISSN
—
Volume of the periodical
139
Issue of the periodical within the volume
PVT-16-1086
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85009444404