All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27690%2F20%3A10244779" target="_blank" >RIV/61989100:27690/20:10244779 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652619343252?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652619343252?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2019.119455" target="_blank" >10.1016/j.jclepro.2019.119455</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials

  • Original language description

    Autoclaved aerated concrete waste (AACW) is a common low-strength cement-based construction and demolition waste, which is currently disposed by landfills and hard to be directly used as supplementary cementitious material. The present work proposed a potential approach incorporating AACW for cement substitution in sustainable building materials. Wet-milling technique was used to dispose and improve the fineness of AACW (median particle size, as low as 2.3 μm). It was proved that AACW is suitable for wet-milling treatment due to its porous texture and low-strength. The pH value and electrical conductivity of the AACW slurry was notably improved. Water requirement was increased by the ultrafine AACW. Both setting time and the main hydration heat location were obviously brought forward by ultrafine AACW, indicating its early hydration acceleration. Compressive strength of ultrafine AACW replaced cement pastes present higher or equivalent value compared with pure cement paste, within 30% replacement level. Pore structure was effectively refined by the ultrafine wet-milling AACW. It was proved that AACW could be efficiently used as an alternative cementitious material in cement and concrete after wet-milling treatment, thus bring environmental and economic benefits. (C) 2019 Elsevier Ltd

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007373" target="_blank" >EF17_048/0007373: Damage Prediction of Structural Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

  • Volume of the periodical

    250

  • Issue of the periodical within the volume

    250

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    5

  • Pages from-to

  • UT code for WoS article

    000508829800047

  • EID of the result in the Scopus database

    2-s2.0-85078301066