Fully Plastic Failure Stresses and Allowable Crack Sizes for Circumferentially Surface-Cracked Pipes Subjected to Tensile Loading
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27690%2F22%3A10250512" target="_blank" >RIV/61989100:27690/22:10250512 - isvavai.cz</a>
Result on the web
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000735947600007" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000735947600007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4050321" target="_blank" >10.1115/1.4050321</a>
Alternative languages
Result language
angličtina
Original language name
Fully Plastic Failure Stresses and Allowable Crack Sizes for Circumferentially Surface-Cracked Pipes Subjected to Tensile Loading
Original language description
Fully plastic failure stresses for circumferentially surface-cracked pipes subjected to tensile loading can be estimated by means of limit load criteria based on the net-section stress approach. Limit load criteria of the first type (labeled LLC-1) were derived from the balance of uniaxial forces. Limit load criteria of the second type are given in Section XI of the ASME (American Society of Mechanical Engineering) Code, and were derived from the balance of bending moment and axial force. These are labeled LLC-2. Fully plastic failure stresses estimated by using LLC-1 and LLC-2 were compared. The stresses estimated by LLC-1 are always larger than those estimated by LLC-2. From the literature survey of experimental data, failure stresses obtained by both types of LLC were compared with the experimental data. It can be stated that failure stresses calculated by LLC-1 are better than those calculated by LLC-2 for shallow cracks. On the contrary, for deep cracks, LLC-2 predictions of failure stresses are fairly close to the experimental data. Furthermore, allowable circumferential crack sizes obtained by LLC-1 were compared with the sizes given in Section XI of the ASME Code. The allowable crack sizes obtained by LLC-1 are larger than those obtained by LLC-2. It can be stated that the allowable crack size for tensile stress depends on the condition of constraint of the pipe, and the allowable cracks given in Section XI of the ASME Code are conservative. (C) 2021 EDP Sciences. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/EF17_048%2F0007373" target="_blank" >EF17_048/0007373: Damage Prediction of Structural Materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pressure Vessel Technology, Transactions of the ASME
ISSN
0094-9930
e-ISSN
1528-8978
Volume of the periodical
144
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
nestrankovano
UT code for WoS article
000735947600007
EID of the result in the Scopus database
2-s2.0-85112649264