All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Synergized Multimetal Oxides with Amorphous/Crystalline Heterostructure as Efficient Electrocatalysts for Lithium-Oxygen Batteries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F21%3A10249622" target="_blank" >RIV/61989100:27710/21:10249622 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000642117600001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000642117600001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/aenm.202100110" target="_blank" >10.1002/aenm.202100110</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Synergized Multimetal Oxides with Amorphous/Crystalline Heterostructure as Efficient Electrocatalysts for Lithium-Oxygen Batteries

  • Original language description

    High theoretical specific energy of rechargeable lithium-oxygen (Li-O-2) batteries makes them very promising in the development of long driving range electric vehicles and energy storage on large-scale. However, the large polarization and poor cycling stability associated with insufficient catalytic cathodes and the insulating nature of discharge products limit their practical applications. Here, the fabrication of a trimetallic CoFeCe oxide with an amorphous/crystalline heterostructure acting as an electrocatalyst for the Li-O-2 battery cathode is reported. The best-performing CoFeCe oxide cathode manages to deliver an initial discharge capacity of 12 340 mAh g(-1), while maintaining an impressively enhanced cyclic stability over 2900 h at 100 mA g(-1). As revealed by combined experimental results and density functional theory (DFT) analysis, synergistic interaction between oxide components, amorphous-crystalline domains, unique heterostructure with minimized lattice mismatch, and the enhanced adsorption of the key intermediate LiO2 are critical factors in boosting the electrocatalytic activity of CoFeCe toward the formation of decomposable Li2O2. This work offers a new insight to rationally design and synthesize an effective multimetal oxide electrocatalyst for the Li-O-2 battery cathode.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20400 - Chemical engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institute of Environmental Technology - Excellent Research</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advanced Energy Materials

  • ISSN

    1614-6832

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000642117600001

  • EID of the result in the Scopus database