All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Accelerating O-Redox Kinetics with Carbon Nanotubes for Stable Lithium-Rich Cathodes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10249978" target="_blank" >RIV/61989100:27710/22:10249978 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000797553000001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000797553000001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/smtd.202200449" target="_blank" >10.1002/smtd.202200449</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Accelerating O-Redox Kinetics with Carbon Nanotubes for Stable Lithium-Rich Cathodes

  • Original language description

    Lithium-rich cathodes (LRCs) show great potential to improve the energy density of commercial lithium-ion batteries owing to their cationic and anionic redox characteristics. Herein, a complete conductive network using carbon nanotubes (CNTs) additives to improve the poor kinetics of LRCs is fabricated. Ex situ X-ray photoelectron spectroscopy first demonstrates that the slope at a low potential and the following long platform can be assigned to the transition metal and oxygen redox, respectively. The combination of galvanostatic intermittent titration technique and electrochemical impedance spectroscopy further reveal that a battery with CNTs exhibited accelerated kinetics, especially for the O-redox process. Consequently, LRCs with CNTs exhibit a much better rate and cycling performance (ALMOST EQUAL TO89% capacity retention at 2 C for over 200 cycles) than the Super P case. Eventually, TEM results imply that the improved electrochemical performance of the CNTs case also benefits from its more stable bulk and surface structures. Such a facile conductive additive modification strategy also provides a universal approach for the enhancement of the electron diffusion properties of other electrode materials. (C) 2022 The Authors. Small Methods published by Wiley-VCH GmbH.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institute of Environmental Technology - Excellent Research</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Small Methods

  • ISSN

    2366-9608

  • e-ISSN

  • Volume of the periodical

    6

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000797553000001

  • EID of the result in the Scopus database

    2-s2.0-85130331421