All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Porous vs. Nanotubular Anodic TiO2: Does the Morphology Really Matters for the Photodegradation of Caffeine?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10250119" target="_blank" >RIV/61989100:27710/22:10250119 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2079-6412/12/7/1002/htm" target="_blank" >https://www.mdpi.com/2079-6412/12/7/1002/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/coatings12071002" target="_blank" >10.3390/coatings12071002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Porous vs. Nanotubular Anodic TiO2: Does the Morphology Really Matters for the Photodegradation of Caffeine?

  • Original language description

    Herein, the preparation of nanotubular and porous TiO2 structures (TNS) is presented for photocatalytic applications. Different TNS were prepared in three different types of glycerol- and ethylene glycol-based electrolytes on a large area (approx. 20 cm(2)) via anodization using different conditions (applied potential, fluoride concentration). Morphology, structure, and optical properties of TNS were characterized by Scanning Electron Microscopy (SEM), X-ray Diffractometry (XRD), and Diffuse Reflectance Spectroscopy (DRS), respectively. All TNS possess optical band-gap energy (E-BG) in the range from 3.1 eV to 3.2 eV. Photocatalytic degradation of caffeine was conducted to evaluate the efficiency of TNS. Overall, nanotubular TiO2 possessed enhanced degradation efficiencies (up to 50% degradation) compared to those of porous TiO2 (up to 30% degradation). This is due to the unique properties of nanotubular TiO2, e.g., improved incident light utilization. As the anodization of large areas is, nowadays, becoming a trend, we show that both nanotubular and porous TiO2 are promising for their use in photocatalysis and could be potentially applicable in photoreactors for wastewater treatment. We believe this present work can be the foundation for future development of efficient TiO2 nanostructures for industrial applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Coatings

  • ISSN

    2079-6412

  • e-ISSN

    2079-6412

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000831473500001

  • EID of the result in the Scopus database