Photocatalytic hydrogen generation during water splitting over a commercial TiO2 photocatalyst P25: modelling and experimental studies.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10251132" target="_blank" >RIV/61989100:27710/22:10251132 - isvavai.cz</a>
Result on the web
<a href="https://sscheconference.sk/" target="_blank" >https://sscheconference.sk/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Photocatalytic hydrogen generation during water splitting over a commercial TiO2 photocatalyst P25: modelling and experimental studies.
Original language description
Poster na konferenci International Conference of SSCHE and PERMEA, 23.-26.5.2022, Tatranské Matliare, SlovakiaIncreasing energy consumption, depletion of fossil fuels, and environmental pollution caused by human activities represent major issues. Hydrogen appears to be a promising candidate for replacing fossil fuels without adversely affecting fuel process efficiency and the environment. Photocatalytic water splitting is based on harvesting light energy exploited for yielding hydrogen. In this work, was created a phenomenological kinetic model of hydrogen generation that considers a limiting rate of H2 mass transfer from the liquid to the gas phase. The model works with a spatial distribution of irradiation in the photoreactor, which intrinsically affects the reaction term in the H2 mass balance. The effect of different concentrations of commercial TiO2 photocatalyst (Evonik P25) was investigated. Reaching the maximum yield of H2 generation requires loading the optimal concentration of a photocatalyst with a sufficiently large active surface and providing uniformly distributed intensive irradiation. The comparison of experimental and theoretical efficiencies showed a reasonable agreement that the theoretical average reaction rate reached a maximum for a photocatalyst concentration of 0.23 g/l, very close to the one observed experimentally 0.25 g/l. Interestingly, the photonic efficiency remains constant beyond this optimal catalyst concentration. The results of this investigation deepen the understanding of mass transfer limitations in the photocatalytic productionof gases and their effect on the overall performance of photoreactors.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institute of Environmental Technology - Excellent Research</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů