All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast synthesis of large-area bilayer graphene film on Cu

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F23%3A10252886" target="_blank" >RIV/61989100:27710/23:10252886 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41467-023-38877-9" target="_blank" >https://www.nature.com/articles/s41467-023-38877-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41467-023-38877-9" target="_blank" >10.1038/s41467-023-38877-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast synthesis of large-area bilayer graphene film on Cu

  • Original language description

    Bilayer graphene (BLG) is promising for optoelectronic applications due to its tunable bandgap, but its large-area growth on Cu substrates is still challenging. Here, the authors demonstrate the fast synthesis of high-coverage meter-scale BLG on commercial Cu foils by introducing CO2 during the growth. Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Communications

  • ISSN

    2041-1723

  • e-ISSN

    2041-1723

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    001003996200022

  • EID of the result in the Scopus database