All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

WIND ENERGY POTENTIAL ASSESSMENT BASED ON WIND DIRECTION MODELLING AND MACHINE LEARNING

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F16%3A86100168" target="_blank" >RIV/61989100:27730/16:86100168 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27360/16:86100168 RIV/61989100:27240/16:86100168

  • Result on the web

    <a href="http://www.nnw.cz/doi/2016/NNW.2016.26.030.pdf" target="_blank" >http://www.nnw.cz/doi/2016/NNW.2016.26.030.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2016.26.030" target="_blank" >10.14311/NNW.2016.26.030</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    WIND ENERGY POTENTIAL ASSESSMENT BASED ON WIND DIRECTION MODELLING AND MACHINE LEARNING

  • Original language description

    Precise wind energy potential assessment is vital for wind energy generation and planning and development of new wind power plants. This work proposes and evaluates a novel two-stage method for location-specific wind energy potential assessment. It combines accurate statistical modelling of annual wind direction distribution in a given location with supervised machine learning of efficient estimators that can approximate energy efficiency coefficients from the parameters of optimized statistical wind direction models. The statistical models are optimized using differential evolution and energy efficiency is approximated by evolutionary fuzzy rules.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    20

  • Pages from-to

    519-538

  • UT code for WoS article

    000392283000001

  • EID of the result in the Scopus database