WIND ENERGY POTENTIAL ASSESSMENT BASED ON WIND DIRECTION MODELLING AND MACHINE LEARNING
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F16%3A86100168" target="_blank" >RIV/61989100:27730/16:86100168 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27360/16:86100168 RIV/61989100:27240/16:86100168
Result on the web
<a href="http://www.nnw.cz/doi/2016/NNW.2016.26.030.pdf" target="_blank" >http://www.nnw.cz/doi/2016/NNW.2016.26.030.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2016.26.030" target="_blank" >10.14311/NNW.2016.26.030</a>
Alternative languages
Result language
angličtina
Original language name
WIND ENERGY POTENTIAL ASSESSMENT BASED ON WIND DIRECTION MODELLING AND MACHINE LEARNING
Original language description
Precise wind energy potential assessment is vital for wind energy generation and planning and development of new wind power plants. This work proposes and evaluates a novel two-stage method for location-specific wind energy potential assessment. It combines accurate statistical modelling of annual wind direction distribution in a given location with supervised machine learning of efficient estimators that can approximate energy efficiency coefficients from the parameters of optimized statistical wind direction models. The statistical models are optimized using differential evolution and energy efficiency is approximated by evolutionary fuzzy rules.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
20
Pages from-to
519-538
UT code for WoS article
000392283000001
EID of the result in the Scopus database
—