All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Carbon Sequestration in Remediated Post-Mining Soils: A New Indicator for the Vertical Soil Organic Carbon Variability Evaluation in Remediated Post-Mining Soils

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F23%3A10253002" target="_blank" >RIV/61989100:27730/23:10253002 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1073/16/16/5876" target="_blank" >https://www.mdpi.com/1996-1073/16/16/5876</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en16165876" target="_blank" >10.3390/en16165876</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Carbon Sequestration in Remediated Post-Mining Soils: A New Indicator for the Vertical Soil Organic Carbon Variability Evaluation in Remediated Post-Mining Soils

  • Original language description

    The present study experimentally investigated two different open-cast post-mining areas with different remediation methods for the vertical distribution of sequestered soil organic carbon (SOC). The study has been performed for two soil layers (0-15 cm, and 15-30 cm) for the four areas with different remediation advancement (up to 20 years) at both studied post-mining soils: the limestone post-mining soil remediated with embankment and lignite post-mining soil remediated with sewage sludge. The study revealed that SOC is more stable within soil depths for lignite post-mining soil remediated with sewage sludge in comparison to the limestone post-mining soil remediated with embankment. The lignite post-mining soil remediated with sewage sludge showed a better hydrophobicity, humidity, aromaticity, and C/N ratio according to the 13C NMR. Therefore, in that soil, an increased microbial community has been observed. The study observed a positive correlation between GRSP content with a fungi community within soil depths. For lignite post-mining soil remediated with sewage sludge, the activity of ureases and dehydrogenases was generally lower compared to the post-mining soil remediation with embankment. The investigation found good parameters of Ce and NCER which for both studied areas were negative which indicate for the privilege of the higher capturing of CO2 over its release from the soil into the atmosphere. The study finds no relevant changes in SOC, POXC, TC, and LOI content within soil depth and remediation age. Due to the lack of a possible well-describing indicator of the vertical distribution of SOC stability in post-mining remediation soil, we proposed two different indicators for differentially managed post-mining soil remediations. The model of calculation of vertical SOC variability index can be universally used for different post-mining soils under remediation, however, both proposed calculated indexes are unique for studied soils. The proposed model of an index may be helpful for remediation management, C sequestration prediction, and lowering the carbon footprint of mining activity. (C) 2023 by the authors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energies

  • ISSN

    1996-1073

  • e-ISSN

    1996-1073

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    29

  • Pages from-to

    5876

  • UT code for WoS article

    001057361200001

  • EID of the result in the Scopus database

    2-s2.0-85168792713