EFFECT OF OXIDE DISPERSION ON ELECTRIC CONDUCTIVITY OF ROTARY SWAGED POWDER-BASED COPPER COMPOSITES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F23%3A10254534" target="_blank" >RIV/61989100:27730/23:10254534 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27230/23:10254534 RIV/61989100:27240/23:10254534 RIV/61989100:27360/23:10254534 RIV/61989100:27740/23:10254534
Result on the web
<a href="https://doi.org/10.37904/metal.2023.4636" target="_blank" >https://doi.org/10.37904/metal.2023.4636</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
EFFECT OF OXIDE DISPERSION ON ELECTRIC CONDUCTIVITY OF ROTARY SWAGED POWDER-BASED COPPER COMPOSITES
Original language description
Copper is a very popular electro-conductive material, however, the mechanical properties of pure Cu are low. They can be typically improved by (micro)alloying, or via structure modifications introduced by optimized deformation and thermomechanical treatments. Designing a Cu-based composite, possibly strengthened by a dispersion of fine oxides, is another way how to favourably improve the strength properties of Cu. In this study, we performed mechanical alloying of a Cu powder with a powder of Al2O3 oxide, which is known to have strengthening effects on metallic materials. After mixing, we sealed the powder mixture into evacuated tubular Cu containers (i.e. cans). As for the consolidation procedure, we applied direct consolidation of the canned powders via the intensive plastic deformation method of rotary swaging, performed under warm conditions. Subsequently, we subjected the swaged conductors to measurements of electric conductivity and detailed structure observations. The results revealed that the applied swaging ratio was sufficient to fully consolidate the canned powders as the final conductor was unrecognizable from a cast alloy from the viewpoints of visual and structure assessment. In other words, the structure did not exhibit any voids or remnants of unconsolidated powder particles. The observed fine grains with homogeneous dispersion of Al2O3 oxide particles provided improvement of the mechanical properties, as proven by microhardness measurements. Moreover, the electric properties remained favourable
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20500 - Materials engineering
Result continuities
Project
<a href="/en/project/GA22-11949S" target="_blank" >GA22-11949S: Nanotwins, functional properties driven by intensive plastic deformation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
METAL 2023 : 32nd International Conference on Metallurgy and Materials : conference proceedings : May 17–19, 2023, OREA Congress Hotel Brno, Czech Republic, EU
ISBN
978-80-88365-12-9
ISSN
2694-9296
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
Tanger
Place of publication
Ostrava
Event location
Brno
Event date
May 17, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—