All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A deep transfer learning based convolution neural network framework for air temperature classification using human clothing images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F24%3A10256296" target="_blank" >RIV/61989100:27730/24:10256296 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-024-80657-y" target="_blank" >https://www.nature.com/articles/s41598-024-80657-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-80657-y" target="_blank" >10.1038/s41598-024-80657-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A deep transfer learning based convolution neural network framework for air temperature classification using human clothing images

  • Original language description

    Weather recognition is crucial due to its significant impact on various aspects of daily life, such as weather prediction, environmental monitoring, tourism, and energy production. Several studies have already conducted research on image-based weather recognition. However, previous studies have addressed few types of weather phenomena recognition from images with insufficient accuracy. In this paper, we propose a transfer learning CNN framework for classifying air temperature levels from human clothing images. The framework incorporates various deep transfer learning approaches, including DeepLabV3 Plus for semantic segmentation and others for classification such as BigTransfer (BiT), Vision Transformer (ViT), ResNet101, VGG16, VGG19, and DenseNet121. Meanwhile, we have collected a dataset called the Human Clothing Image Dataset (HCID), consisting of 10,000 images with two categories (High and Low air temperature). All the models were evaluated using various classification metrics, such as the confusion matrix, loss, precision, F1-score, recall, accuracy, and AUC-ROC. Additionally, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) to emphasize significant features and regions identified by models during the classification process. The results show that DenseNet121 outperformed other models with an accuracy of 98.13%. Promising experimental results highlight the potential benefits of the proposed framework for detecting air temperature levels, aiding in weather prediction and environmental monitoring.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10700 - Other natural sciences

Result continuities

  • Project

    <a href="/en/project/TN02000025" target="_blank" >TN02000025: National Centre for Energy II</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    001389338200014

  • EID of the result in the Scopus database

    2-s2.0-85213727455