INTELLIGENT WEB CACHING USING MACHINE LEARNING METHODS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F11%3A86081465" target="_blank" >RIV/61989100:27740/11:86081465 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
INTELLIGENT WEB CACHING USING MACHINE LEARNING METHODS
Original language description
Web caching is a technology to improve network traffic on the Internet. It is a temporary storage of Web objects for later retrieval. Three significant advantages of Web caching include reduction in bandwidth consumption, server load, and latency. Theseadvantages make the Web to be less expensive yet it provides better performance. This research aims to introduce an advanced machine learning method for a classification problem in Web caching that requires a decision to cache or not to cache Web objectsin a proxy cache server. The challenges in this classification problem include the issues in identifying attributes ranking and improve the classification accuracy significantly. This research includes four methods that are Classification and RegressionTrees (CART), Multivariate Adaptive Regression Splines (MARS), Random Forest (RF) and Tree Net (TN) for classification on Web caching. The experimental results reveal that CART performed extremely well in classifying Web objects from the
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
24
Pages from-to
429-452
UT code for WoS article
000297179900004
EID of the result in the Scopus database
—