Neural PCA and maximum likelihood hebbian learning on the GPU
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F12%3A86084952" target="_blank" >RIV/61989100:27740/12:86084952 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-33266-1_17" target="_blank" >http://dx.doi.org/10.1007/978-3-642-33266-1_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-33266-1_17" target="_blank" >10.1007/978-3-642-33266-1_17</a>
Alternative languages
Result language
angličtina
Original language name
Neural PCA and maximum likelihood hebbian learning on the GPU
Original language description
This study introduces a novel fine-grained parallel implementation of a neural principal component analysis (neural PCA) variant and the maximum Likelihood Hebbian Learning (MLHL) network designed for modern many-core graphics processing units (GPUs). The parallel implementation as well as the computational experiments conducted in order to evaluate the speedup achieved by the GPU are presented and discussed. The evaluation was done on a well-known artificial data set, the 2D bars data set.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science. Volume 7553
ISBN
978-3-642-33265-4
ISSN
0302-9743
e-ISSN
—
Number of pages
8
Pages from-to
132-139
Publisher name
Springer
Place of publication
Berlin
Event location
Lausanne
Event date
Sep 11, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—