Estimates of deviations from exact solutions of elasticity problems with nonlinear boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86087881" target="_blank" >RIV/61989100:27740/13:86087881 - isvavai.cz</a>
Result on the web
<a href="http://www.degruyter.com/view/j/rnam.2013.28.issue-6/rnam-2013-0033/rnam-2013-0033.xml?format=INT" target="_blank" >http://www.degruyter.com/view/j/rnam.2013.28.issue-6/rnam-2013-0033/rnam-2013-0033.xml?format=INT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/rnam-2013-0033" target="_blank" >10.1515/rnam-2013-0033</a>
Alternative languages
Result language
angličtina
Original language name
Estimates of deviations from exact solutions of elasticity problems with nonlinear boundary conditions
Original language description
We present a method of deriving fully guaranteed bounds of the difference between the exact and approximate solutions of variational inequalities generated by problems in the theory of elasticity with nonlinear boundary conditions (e.g., unilateral and friction type boundary conditions). These estimates are obtained with the help of the duality technique in the calculus of variations. They do not contain mesh-dependent constants and are valid for any function from the corresponding energy space comparedwith the exact solution. We prove that the majorants of deviations are continuous and vanish if and only if approximate solutions coincide with the exact one. Several numerical tests demonstrate the quality of the estimates.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Russian Journal of Numerical Analysis and Mathematical Modelling
ISSN
0927-6467
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
33
Pages from-to
"597?630"
UT code for WoS article
000327767200005
EID of the result in the Scopus database
—