All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forecasting FTSE Bursa Malaysia KLCI Trend with Hybrid Particle Swarm Optimization and Support Vector Machine Technique

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86089370" target="_blank" >RIV/61989100:27740/13:86089370 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/NaBIC.2013.6617856" target="_blank" >http://dx.doi.org/10.1109/NaBIC.2013.6617856</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NaBIC.2013.6617856" target="_blank" >10.1109/NaBIC.2013.6617856</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forecasting FTSE Bursa Malaysia KLCI Trend with Hybrid Particle Swarm Optimization and Support Vector Machine Technique

  • Original language description

    Stock trend forecasting is one of the important issues in stock market research. However, forecasting stock trend remains a challenge because of its irregular characteristic in the stock indices distribution, which changes over time. Support Vector Machine (SVM) produces a fairly good result in stock trend forecasting, but the performance of SVM can be affected by the high dimensional input features and noisy data. This paper hybridizes the Particle Swarm Optimization (PSO) algorithm to generate the optimum features set prior to facilitate SVM learning. The SVM algorithm uses the Radial Basis Function (RBF) kernel function and optimization of the gamma and large margin parameters are done using the PSO algorithm. The proposed algorithm was tested on apre-sampled 17 years record of daily Kuala Lumpur Composite Index (KLCI) data. The PSOSVM approach is applied to eliminate unnecessary or insignificant features, and effectively determine the parameter values, in turn improving the overal

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2013 World Congress on Nature and Biologically Inspired Computing, NaBIC 2013

  • ISBN

    978-1-4799-1415-9

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    169-174

  • Publisher name

    Elsevier

  • Place of publication

    New York

  • Event location

    Fargo

  • Event date

    Aug 12, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article