Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F14%3A86087620" target="_blank" >RIV/61989100:27740/14:86087620 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0129065714300071" target="_blank" >http://dx.doi.org/10.1142/S0129065714300071</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129065714300071" target="_blank" >10.1142/S0129065714300071</a>
Alternative languages
Result language
angličtina
Original language name
Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning
Original language description
Currently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues andpropose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide ran
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0016" target="_blank" >EE2.3.30.0016: Opportunities for young researchers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Neural Systems
ISSN
0129-0657
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
1
Country of publishing house
SG - SINGAPORE
Number of pages
18
Pages from-to
1-18
UT code for WoS article
—
EID of the result in the Scopus database
—