Daily Power Load Forecasting using the Differential Polynomial Neural Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F14%3A86090329" target="_blank" >RIV/61989100:27740/14:86090329 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-07617-1_42#page-1" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-07617-1_42#page-1</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Daily Power Load Forecasting using the Differential Polynomial Neural Network
Original language description
The purpose of the short-term electricity demand prediction is to forecast in advance the system load, represented by the sum of all consumers load at the same time. Power demand forecasting is important for economically efficient operation and effectivecontrol of power systems and enables to plan the load of generating unit. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms, which can substitute for the ord
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science. Volume 8480
ISBN
978-3-319-07616-4
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
478-489
Publisher name
Springer Verlag
Place of publication
London
Event location
Salamanca
Event date
Jun 11, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—