A TFETI domain decomposition solver for elastoplastic problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F14%3A86090576" target="_blank" >RIV/61989100:27740/14:86090576 - isvavai.cz</a>
Alternative codes found
RIV/68145535:_____/14:00425341 RIV/68145535:_____/14:00427638 RIV/67985556:_____/14:00427638
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0096300314000253" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0096300314000253</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2013.12.186" target="_blank" >10.1016/j.amc.2013.12.186</a>
Alternative languages
Result language
angličtina
Original language name
A TFETI domain decomposition solver for elastoplastic problems
Original language description
We propose an algorithm for the efficient parallel implementation of elastoplastic problems with hardening based on the so-called TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. We consider an associated elastoplastic model with the von Mises plastic criterion and the linear isotropic hardening law. Such a model is discretized by the implicit Euler method in time and the consequent one time step elastoplastic problem by the finite element method in space. The latterresults in a system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI domain decomposition method. The proposed TFETI based algorithm was implemented in Matlab parallel environment and its performance was illustrated on a 3D elastoplastic benchmark. Numerical results
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
231
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
634-653
UT code for WoS article
—
EID of the result in the Scopus database
—