GRAPH VISUALISATION BY CONCURRENT DIFFERENTIAL EVOLUTION
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F15%3A86096581" target="_blank" >RIV/61989100:27740/15:86096581 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.14311/NNW.2015.25.019" target="_blank" >http://dx.doi.org/10.14311/NNW.2015.25.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2015.25.019" target="_blank" >10.14311/NNW.2015.25.019</a>
Alternative languages
Result language
angličtina
Original language name
GRAPH VISUALISATION BY CONCURRENT DIFFERENTIAL EVOLUTION
Original language description
A representative dimensionality reduction is an important step in the analysis of real-world data. Vast amounts of raw data are generated by cyber-physical and information systems in different domains. They often feature A combination of high dimensionality, large volume, and vague, loosely defined structure. The main goal of visual data analysis is an intuitive, comprehensible, efficient, and graphically appealing representation of information and knowledge that can be found in such collections. In order to achieve an efficient visualisation, raw data need to be transformed into a refined form suitable for machine and human analysis. Various methods of dimension reduction and projection to low-dimensional spaces are used to accomplish this task. Sammon's projection is a well-known non-linear projection algorithm valued for its ability to preserve dependencies from an original high-dimensional data space in the low-dimensional projection space. Recently, it has been shown that bio-insp
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
7
Pages from-to
369-386
UT code for WoS article
000361503300002
EID of the result in the Scopus database
—