All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

X-ray natural birefringence in reflection from graphene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F16%3A86099440" target="_blank" >RIV/61989100:27740/16:86099440 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1103/PhysRevB.94.045422" target="_blank" >http://dx.doi.org/10.1103/PhysRevB.94.045422</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.94.045422" target="_blank" >10.1103/PhysRevB.94.045422</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    X-ray natural birefringence in reflection from graphene

  • Original language description

    The existence of natural birefringence in x-ray reflection on graphene is demonstrated at energies spanning the carbon 1s absorption edge. This new x-ray effect has been discovered with precision measurements of the polarization-plane rotation and the polarization-ellipticity changes that occur upon reflection of linearly polarized synchrotron radiation on monolayer graphene. Extraordinarily large polarization-plane rotations of up to 30 degrees, accompanied by a change from linearly to circularly polarized radiation have been measured for graphene on copper. Graphene on single crystalline cobalt, grown on tungsten, exhibits rotation values of up to 17 degrees. Both graphene systems show resonantly enhanced effects at the pi* and sigma* energies. The results are referenced against those obtained for polycrystalline carbon and highly oriented pyrolytic graphite (HOPG), respectively. As expected, polycrystalline carbon shows negligible rotation, whereas a huge maximum rotation of 140 degrees has been observed for HOPG that may be considered a graphene multilayer system. HOPG is found to exhibit such large rotation values over a broad energy range, even well beyond the pi* resonance energy due to the contributions of numerous graphene layers. To explain the origin of the observed natural birefringence of graphene, the Stokes parameters as well as the x-ray natural linear dichroism in reflection have been determined. It is shown that the birefringence directly results from the optical anisotropy related to the orthogonal alignment of pi* and sigma* bonds in the graphene layer. Our polarization analysis reveals a strong bonding of graphene on Co with a reduced sigma* excitation energy and a strong tilt of 50% of the p(z) orbitals towards diagonal orientation. In contrast, graphene on Cu is weakly bound with an orthogonal orientation of the p(z) orbitals. Exhibiting such a large natural birefringence that can be controlled through substrate choice.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BM - Solid-state physics and magnetism

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LM2015070" target="_blank" >LM2015070: IT4Innovations National Supercomputing Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical review B

  • ISSN

    2469-9950

  • e-ISSN

  • Volume of the periodical

    94

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000379651000006

  • EID of the result in the Scopus database