Markov chain model approach for traffic incident length prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F17%3A10238089" target="_blank" >RIV/61989100:27740/17:10238089 - isvavai.cz</a>
Result on the web
<a href="https://dl.acm.org/citation.cfm?doid=3157737.3157750" target="_blank" >https://dl.acm.org/citation.cfm?doid=3157737.3157750</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3157737.3157750" target="_blank" >10.1145/3157737.3157750</a>
Alternative languages
Result language
angličtina
Original language name
Markov chain model approach for traffic incident length prediction
Original language description
One of the most challenging parts of traffic modeling is how to model traffic behavior during traffic incidents. One of the possible approaches to this problem is to use historical data to identify typical incidents and use this knowledge to classify future time series. This classification can be utilized for example in prediction of traffic incident duration. This procedure requires solutions to several problems. The first problem is how can historical time series of traffic incidents be clustered, and these clusters can be parametrized. The second problem is how can time series of new ongoing incidents be classified to these existing clusters and how this classification can be utilized in the prediction of their length. The main aim of this article is to propose a solution to these problems. Methods utilized in addressing these problems are called Markov chains, Dynamic Time Warping, Bayesian classification and Monte Carlo simulation. © 2017 Association for Computing Machinery.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ACM International Conference Proceeding Series 2017
ISBN
978-1-4503-5376-2
ISSN
—
e-ISSN
neuvedeno
Number of pages
5
Pages from-to
63-67
Publisher name
Association for Computing Machinery
Place of publication
New York
Event location
Čcheng-tu
Event date
Oct 12, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—