All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimal Mapping Function for Predictions of the Subjective Quality Evaluation Using Artificial Intelligence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10243549" target="_blank" >RIV/61989100:27740/19:10243549 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-32520-6_21" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-32520-6_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-32520-6_21" target="_blank" >10.1007/978-3-030-32520-6_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimal Mapping Function for Predictions of the Subjective Quality Evaluation Using Artificial Intelligence

  • Original language description

    With the growth of QoE interest, IPTV providers need a method to control QoE. The paper describes the correlation between the results of objective and subjective methods in video quality assessment. The authors proposed the optimal mapping function for predictions of the subjective quality evaluation based on the objective evaluation to determine the perception of the video quality by the human brain. Our model using artificial intelligence, it is based on a neural network which can simulate and predicts the subjective quality of the scene. It also can predict subjective or objective video quality for video sequences defined by spatial, temporal information, which is the critical and key variable of a given scene, and by the qualitative parameters of the scene. The results from the model are verified by comparing predicted video quality using the proposed classifier with the required value. The two most common statistical parameters related to express performance are Pearson&apos;s correlation coefficient and Root Mean Square Error. (C) 2020, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

    <a href="/en/project/LM2015070" target="_blank" >LM2015070: IT4Innovations National Supercomputing Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 1069

  • ISBN

    978-3-030-32519-0

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Number of pages

    13

  • Pages from-to

    263-275

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    San Francisco

  • Event date

    Oct 24, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article