Comparison of Solvers for Contact Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10247995" target="_blank" >RIV/61989100:27740/20:10247995 - isvavai.cz</a>
Result on the web
<a href="https://aip.scitation.org/doi/abs/10.1063/5.0027222" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/5.0027222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0027222" target="_blank" >10.1063/5.0027222</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of Solvers for Contact Problems
Original language description
The paper focuses on the comparison of sequential solvers used for solving quadratic programming problems which have a wide variety of applications including contact modeling. The complex algebraic formulation generated from the contact problems may be reduced in some cases to fairly simple quadratic programming problem using dualization theory and can be effectively solved using different multigrid or domain decomposition based massively parallel solvers. In the paper, selected solvers are applied on benchmark problems and the achieved results are compared.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings. Volume 2293
ISBN
978-0-7354-4025-8
ISSN
0094-243X
e-ISSN
1551-7616
Number of pages
4
Pages from-to
—
Publisher name
American Institute of Physics
Place of publication
New York
Event location
Rhodes
Event date
Sep 23, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000636709500381