Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10247608" target="_blank" >RIV/61989100:27740/21:10247608 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/21:10247608
Result on the web
<a href="https://www.degruyter.com/document/doi/10.1515/jnma-2020-0048/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/jnma-2020-0048/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/jnma-2020-0048" target="_blank" >10.1515/jnma-2020-0048</a>
Alternative languages
Result language
angličtina
Original language name
Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems
Original language description
Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of "floating"clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m x m x m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems. (C) 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Numerical Mathematics
ISSN
1570-2820
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
289-306
UT code for WoS article
000730400000002
EID of the result in the Scopus database
2-s2.0-85099927350