Towards optimal supercomputer energy consumption forecasting method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10248132" target="_blank" >RIV/61989100:27740/21:10248132 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/math9212695" target="_blank" >https://doi.org/10.3390/math9212695</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9212695" target="_blank" >10.3390/math9212695</a>
Alternative languages
Result language
angličtina
Original language name
Towards optimal supercomputer energy consumption forecasting method
Original language description
Accurate prediction methods are generally very computationally intensive, so they take a long time. Quick prediction methods, on the other hand, are not very accurate. Is it possible to design a prediction method that is both accurate and fast? In this paper, a new prediction method is proposed, based on the so-called random time-delay patterns, named the RTDP method. Using these random time-delay patterns, this method looks for the most important parts of the time series' previous evolution, and uses them to predict its future development. When comparing the supercomputer infrastructure power consumption prediction with other commonly used prediction methods, this newly proposed RTDP method proved to be the most accurate and the second fastest. (C) 2021 by the authors. Licensee MDPI, Basel Switzerland.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LM2018140" target="_blank" >LM2018140: e-Infrastructure CZ</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
21
Country of publishing house
CH - SWITZERLAND
Number of pages
9
Pages from-to
—
UT code for WoS article
000719579900001
EID of the result in the Scopus database
2-s2.0-85117810207