Data Science with R and Python
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10249847" target="_blank" >RIV/61989100:27740/22:10249847 - isvavai.cz</a>
Result on the web
<a href="https://events.it4i.cz/event/138/" target="_blank" >https://events.it4i.cz/event/138/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Data Science with R and Python
Original language description
The R part of the course was focused on presenting the basics of exploratory data analysis in R, as well as presentation of the findings through visualization, and basics of statistical/machine learning modelling. The course covered the basic workflow of exploratory analysis using packages from the 'tidyverse' universe. These included packages for the loading of data, preprocessing data, basic data exploration, and visualization. In the second part, the basics of modelling in R starting with data preparation (missing data handling, one-hot enconding, etc.), model training, and model evaluation were introduced. In this part the main tools were packages 'caret' and 'xgboost'. The Python oriented part introduced essential data-scientific packages and demonstrated their usage with real world data analytic problems, and showed how to tackle such problems.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů