Temperature dependence of magnetic anisotropy and magnetoelasticity from classical spin-lattice calculations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10252242" target="_blank" >RIV/61989100:27740/23:10252242 - isvavai.cz</a>
Result on the web
<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.094426" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.094426</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.107.094426" target="_blank" >10.1103/PhysRevB.107.094426</a>
Alternative languages
Result language
angličtina
Original language name
Temperature dependence of magnetic anisotropy and magnetoelasticity from classical spin-lattice calculations
Original language description
We present a classical molecular-spin dynamics (MSD) methodology that enables accurate computations of the temperature dependence of the magnetocrystalline anisotropy as well as magnetoelastic properties of magnetic materials. The nonmagnetic interactions are accounted for by a spectral neighbor analysis potential (SNAP) machine-learned interatomic potential, whereas the magnetoelastic contributions are accounted for using a combination of an extended Heisenberg Hamiltonian and a Néel pair interaction model, representing both the exchange interaction and spin-orbit-coupling effects, respectively. All magnetoelastic potential components are parameterized using a combination of first-principles and experimental data. Our framework is applied to the α phase of iron. Initial testing of our MSD model is done using a 0 K parametrization of the Néel interaction model. After this, we examine how individual Néel parameters impact the B1 and B2 magnetostrictive coefficients using a moment-independent δ sensitivity analysis. The results from this study are then used to initialize a genetic algorithm optimization which explores the Néel parameter phase space and tries to minimize the error in the B1 and B2 magnetostrictive coefficients in the range of 0-1200 K. Our results show that while both the 0 K and genetic algorithm optimized parametrization provide good experimental agreement for B1 and B2, only the genetic algorithm optimized results can capture the second peak in the B1 magnetostrictive coefficient which occurs near approximately 800 K.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations national supercomputing center - path to exascale</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical review B
ISSN
2469-9950
e-ISSN
2469-9969
Volume of the periodical
107
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
000958592100001
EID of the result in the Scopus database
2-s2.0-85151278602