All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Segment SEM images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256099" target="_blank" >RIV/61989100:27740/24:10256099 - isvavai.cz</a>

  • Result on the web

    <a href="https://code.it4i.cz/SEM-Image/segment_sem_images_hctpm.git" target="_blank" >https://code.it4i.cz/SEM-Image/segment_sem_images_hctpm.git</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Segment SEM images

  • Original language description

    The study that is supported by the provided software demonstrated that the deep learning model can accurately segment SEM (scanning electron microscope) images, achieving high dice scores for coating layers, pores, and precipitates. The result highlights the significance of the Blender-generated synthetic data in training the deep learning model. The use of blend files for creating realistic synthetic SEM images was pivotal in enhancing segmentation accuracy, particularly for limited real data, showcasing Blender&apos;s value in data augmentation for scientific imaging tasks. This approach uniquely combines synthetic data augmentation and HPC resources to address challenges in SEM image segmentation with limited real-world data.

  • Czech name

  • Czech description

Classification

  • Type

    R - Software

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Internal product ID

    023/13-12-2024_SW

  • Technical parameters

    The software performs segmentation of SEM images, identifying coating layers (e.g., Fe2Al5, FeAl), pores, and chromium precipitates using a U-Net-based deep learning model. The Blender component facilitates synthetic data augmentation via blend files, crucial for enhancing model training. The synthetic data was rendered on Karolina cluster. Large amount of synthetic data can be generated by rendering the blend files using the computational resources on HPC systems.

  • Economical parameters

    Neaplikovatelné

  • Owner IČO

    61989100

  • Owner name

    VŠB - Technická univerzita Ostrava