All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Heat transport analysis of three-dimensional magnetohydrodynamics nanofluid flow through an extending sheet with thermal radiation and heat source/sink

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256387" target="_blank" >RIV/61989100:27740/24:10256387 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2590123024015160?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590123024015160?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rineng.2024.103262" target="_blank" >10.1016/j.rineng.2024.103262</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Heat transport analysis of three-dimensional magnetohydrodynamics nanofluid flow through an extending sheet with thermal radiation and heat source/sink

  • Original language description

    Regarding heat transformation efficiency, the hybrid nanofluid performs superior to the nanofluid. The majority of hybrid nanofluid uses are in the industrial sector, producing solar energy, cooling generators, and vehicle heat transformation. Heat transfer and nanofluid velocity are the two most crucial transport properties that must be evaluated before the first and second thermodynamics equations are applied to nanoscale fluids. The objective of this work is to investigate the characteristics of transmission of heat of magnetohydrodynamic (MHD) nanofluid (Ag/H2O)and hybrid nanofluid (Ag + Al2O3/H2O)flow on a linear extensible sheet when magnetic forces are present. Similarity variables are applied to transform a set of nonlinear dimensionless partial-differential equations to collection of ordinary-differential equations. The non-analytical solutions of these transformed equations are found utilizing the MATLAB mathematical program&apos;s bvp4c function. The impression of various physical attributes along skin friction coefficients and properties of heat transmission are analyzed. The behavior of key parameters, including surface stretching ratio, rotational and magnetic effects, for temperature and velocity, is shown using graphs and tables. In conclusion, hybrid nanofluids, which comprise silver and aluminum oxide nanoparticles dispersed in water, outperform silver-water nanofluids by around 10-15 % under magnetohydrodynamic (MHD). The higher thermal conductivity of these hybrid nanofluids allows for better heat dissipation, making them an appealing option for applications that need optimal thermal management in the presence of magnetic fields.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21100 - Other engineering and technologies

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Results in Engineering

  • ISSN

    2590-1230

  • e-ISSN

    2590-1230

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    001366803900001

  • EID of the result in the Scopus database