All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Surface and bulk magnetic anisotropy in bilayered CoSiB/FeNbCuSiB and FeNbSiB/FeSiB ribbons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27760%2F16%3A86097424" target="_blank" >RIV/61989100:27760/16:86097424 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jallcom.2016.04.243" target="_blank" >http://dx.doi.org/10.1016/j.jallcom.2016.04.243</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jallcom.2016.04.243" target="_blank" >10.1016/j.jallcom.2016.04.243</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Surface and bulk magnetic anisotropy in bilayered CoSiB/FeNbCuSiB and FeNbSiB/FeSiB ribbons

  • Original language description

    The present study is devoted to the surface and bulk magnetic anisotropy of the bilayered Co72.5Si12.5B15/Fe73.5Nb3Cu1Si13.5B9 and Fe74.5Nb3Si13.5B9/Fe77.5Si7.5B15 ribbons which, completed with microstructure analysis, give the basic complex data prospectively usable for sensor applications. The ribbons prepared by modernized planar flow casting technology were fully amorphous as the X-ray diffraction measurements have confirmed. The thickness of ribbons was about 36 μm while the interlayer thickness reaches typically a few μm as the element distributions at cross-sections have shown. A bending of ribbons leads to changes in both surface and bulk anisotropies detected by the magneto-optical Kerr effect and vibrating sample magnetometer, respectively. An observable difference between both anisotropies is ascribed to the fact that the surface magnetic anisotropy is determined only by magnetostrictive behavior of the corresponding individual layer while the bulk anisotropy depends on integral properties of both layers and the interlayer. Moreover, the magnetic measurements at room and elevated temperatures have shown that the bulk magnetic properties are more markedly influenced by the composition of iron rich layers, FeSiNbCuB or FeSiB, being during the casting in contact with air.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BM - Solid-state physics and magnetism

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Alloys and Compounds

  • ISSN

    0925-8388

  • e-ISSN

  • Volume of the periodical

    681

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    402-411

  • UT code for WoS article

    000376443300050

  • EID of the result in the Scopus database

    2-s2.0-84966312486