All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

O-arm navigated frameless and fiducial-less deep brain stimulation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F20%3A73605624" target="_blank" >RIV/61989592:15110/20:73605624 - isvavai.cz</a>

  • Alternative codes found

    RIV/00098892:_____/20:N0000189

  • Result on the web

    <a href="https://www.mdpi.com/2076-3425/10/10/683/htm" target="_blank" >https://www.mdpi.com/2076-3425/10/10/683/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/brainsci10100683" target="_blank" >10.3390/brainsci10100683</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    O-arm navigated frameless and fiducial-less deep brain stimulation

  • Original language description

    Object: Deep brain stimulation (DBS) is a very useful procedure for the treatment of idiopathic Parkinson’s disease (PD), essential tremor, and dystonia. The authors evaluated the accuracy of the new method used in their center for the placing of DBS electrodes. Electrodes are placed using the intraoperative O-arm™ (Medtronic)-controlled frameless and fiducial-less system, Nexframe™ (Medtronic). Accuracy was evaluated prospectively in eleven consecutive PD patients (22 electrodes). Methods: Eleven adult patients with PD were implanted using the Nexframe system without fiducials and with the intraoperative O-arm (Medtronic) system and StealthStation™ S8 navigation (Medtronic). The implantation of DBS leads was performed using multiple-cell microelectrode recording, and intraoperative test stimulation to determine thresholds for stimulation-induced adverse effects. The accuracy was checked in three different steps: (1) using the intraoperative O-arm image and its fusion with preoperative planning, (2) using multiple-cell microelectrode recording and counting the number of microelectrodes with the signal of the subthalamic nucleus (STN) and finally, (3) total error was calculated according to a postoperative CT control image fused to preoperative planning. Results: The total error of the procedure was 1.79 mm; the radial error and the vector error were 171 mm and 163 mm. Conclusions: Implantation of DBS electrodes using an O-arm navigated frameless and fiducial-less system is a very useful and technically feasible procedure with excellent patient toleration with experienced Nexframe users. The accuracy of the method was confirmed at all three steps, and it is comparable to other published results. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    30210 - Clinical neurology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Brain Sciences

  • ISSN

    2076-3425

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    7

  • Pages from-to

    "'683(1)'"-"'683(7)'"

  • UT code for WoS article

    000584180900001

  • EID of the result in the Scopus database

    2-s2.0-85091574049