Serum albumin as a primary non-covalent binding protein for nitro-oleic acid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F22%3A73614970" target="_blank" >RIV/61989592:15110/22:73614970 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/22:73614970 RIV/00209805:_____/22:00078944
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0141813022000605?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0141813022000605?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijbiomac.2022.01.050" target="_blank" >10.1016/j.ijbiomac.2022.01.050</a>
Alternative languages
Result language
angličtina
Original language name
Serum albumin as a primary non-covalent binding protein for nitro-oleic acid
Original language description
This work explores the interaction of 9/10-nitro-oleic acid (NO2-OA) with human serum albumin (HSA). The molecular mechanism of the biological action of NO2-OA is to our knowledge based on a reversible covalent reaction-Michael addition of nucleophilic amino acid residues of proteins. Since HSA is an important fatty acid transporter, a key question is whether NO2-OA can bind covalently or non-covalently to HSA, similarly to oleic acid (OA), which can interact with the FA1-FA7 binding sites of the HSA molecule. 1H NMR studies and competition analysis with OA and the drugs ibuprofen and warfarin were used to investigate a potential non-covalent binding mode. NO2-OA/HSA binding was confirmed to compete with warfarin for FA-7 with significantly higher affinity. NO2-OA competes with ibuprofen for FA-3 and FA-6, however, in contrast to the situation with warfarin, the binding affinities are not significantly different. The described interactions are based exclusively on non-covalent binding. No covalent binding of NO2-OA to HSA was detected by MS/MS. More detailed studies based on MALDI-TOF-MS and Ellman's assay indicated that HSA can be covalently modified in the presence of NO2-OA to a very limited extent. It was also shown that NO2-OA has a higher affinity to HSA than that of OA.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/GJ19-21237Y" target="_blank" >GJ19-21237Y: New electrochemical approaches for the study of modified fatty acids and their biomolecular interactions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
ISSN
0141-8130
e-ISSN
1879-0003
Volume of the periodical
203
Issue of the periodical within the volume
April 2022
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
116-129
UT code for WoS article
000782122500005
EID of the result in the Scopus database
2-s2.0-85123682526