All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Discrete classical orthogonal polynomials and interferometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F00%3A00001068" target="_blank" >RIV/61989592:15310/00:00001068 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Discrete classical orthogonal polynomials and interferometry

  • Original language description

    We apply the Charlier, Kravchuk, and Meixner polynomials with complex parameters for the description of the states intelligent with respect to the generators of representations of the M(2), SU(2), and SU(1,1) groups, respectively. These intelligent states have been studied and treated with regard to enhancing phase sensitivity in precision interferometric measurements.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BH - Optics, masers and lasers

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2000

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Procedings of the Fourth International Conference on Difference Equations

  • ISBN

    90-5699-686-6

  • Number of pages of the result

    413

  • Pages from-to

  • Number of pages of the book

  • Publisher name

    Gordon & Breach

  • Place of publication

    Amsterdam 2000

  • UT code for WoS chapter