Global properties of increasing solutions for the equation x'(t)=x(x(t))-bx(t), b in (0,1)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F00%3A00001099" target="_blank" >RIV/61989592:15310/00:00001099 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Global properties of increasing solutions for the equation x'(t)=x(x(t))-bx(t), b in (0,1)
Original language description
It is proved that any solution of equation x'(t)=x(x(t))-bx(t), b in (0,1), either vanishes identically or is strictly monotone. The structure of all increasing solutions is described. Some open problems are stated as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F98%2F0318" target="_blank" >GA201/98/0318: Qualitative analysis of ordinary and functional differencial equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soochow Journal of Mathematics
ISSN
0250-3255
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
NA
Country of publishing house
XX - stateless person
Number of pages
29
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—