All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Positive solutions of a class of singular functional boundary value problems with φ-Laplacian

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F06%3A00003066" target="_blank" >RIV/61989592:15310/06:00003066 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Positive solutions of a class of singular functional boundary value problems with φ-Laplacian

  • Original language description

    The paper discusses the existence of positive solutions to functional second order differential equations with &#966;-Laplacian satisfying the Dirichlet boundary conditions. The nonlinearity in equations may be singular and change its sign.

  • Czech name

    Kladná řešení jisté třídy singulárních funkcionálních okrajových úloh s φ-laplaciánem

  • Czech description

    V práci je dokázána existence kladných řešení funkcionálních diferenciálních rovnic 2. řádu s &#966;-laplaciánem, která splňují Dirichletovy okrajové podmínky. Nelinearita v rovnici může být singulární a měnit znaménko.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F04%2F1077" target="_blank" >GA201/04/1077: Qualitative analysis of solutions for ordinary and functional differential equations</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Conference on Differential and Difference Equations and Applications

  • ISBN

    977-5945-380

  • ISSN

  • e-ISSN

  • Number of pages

    1456

  • Pages from-to

    1029-1039

  • Publisher name

    Hindawi Publishing Corporation

  • Place of publication

    New York

  • Event location

  • Event date

  • Type of event by nationality

  • UT code for WoS article