All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

SAI-lattices and ringoids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F06%3A00003225" target="_blank" >RIV/61989592:15310/06:00003225 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    SAI-lattices and ringoids

  • Original language description

    The natural bijective correspondence between Boolean algebras and Boolean rings is generalized from Boolean algebras to lattices with 0 every principal ideal of which has an antitone involution. The corresponding ring-like structures are called ringoids.Among them orthorings are characterized by a simple axiom. It is shown that congruences on ringoids are determined by their kernels and that ringoids are permutable at 0.

  • Czech name

    Svazy se sekčními antitonními involucemi a ringoidy

  • Czech description

    Přirozená korespondence mezi Booleovými algebrami a Booleovskými okruhy je zobecněna pro svazy s 0, kde každý hlavní ideál má antitonní involuci. Odpovídající okruhové struktury jsou tzv. ringoidy. Tyto ringoidy jsou charakterizovány jednoduchými axiomy.Je dokázáno, že kongruence ringoidů jsou určeny jejich jádry a že jsou permutabilní v 0

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Demonstratio Mathematica

  • ISSN

    0420-1213

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    PL - POLAND

  • Number of pages

    8

  • Pages from-to

    483-490

  • UT code for WoS article

  • EID of the result in the Scopus database