All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Medial Quasigroups and Geometry.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F06%3A00009825" target="_blank" >RIV/61989592:15310/06:00009825 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Medial Quasigroups and Geometry.

  • Original language description

    The relationship of medial quasigroups to commutative groups, nearfields, and affine geometry are explained, particularly in the finite case. Comparing various view-points and methods, the following topics are discussed: How to derive medial quasigroupsfrom abelian groups (Toyoda's theorem). The relatioship of loops to web geometry. How particular quasigroups - of type (n,k) - are related to affine spaces or affine desarquesian planes (Pucharev's Theorem). How homogeneous quasigroups are related to nearfields. How special classes of medial quasigroups (e.g. the so-called golden section quasigroups) generate parallelogram spaces and various interesting geometric configurations such as parallelograms and trapezoids. Results reached by various authors (R.H. Bruck, N.K. Pucharev, S.K. Stein, J. Šiftar, J. Duplák, V. Volenec, Z.Begovič-Kolář, Krčadinac, Bombardelli etc.) are presented in a unified language and notation, and supplied or completed by perceptions, observations, remarks and v

  • Czech name

  • Czech description

Classification

  • Type

    B - Specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F05%2F2707" target="_blank" >GA201/05/2707: Computer-assisted research in Riemannian and affine geometry</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • ISBN

    80-244-1399-X

  • Number of pages

    103

  • Publisher name

    Univerzita Palackého

  • Place of publication

    Olomouc

  • UT code for WoS book