Medial Quasigroups and Geometry.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F06%3A00009825" target="_blank" >RIV/61989592:15310/06:00009825 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Medial Quasigroups and Geometry.
Original language description
The relationship of medial quasigroups to commutative groups, nearfields, and affine geometry are explained, particularly in the finite case. Comparing various view-points and methods, the following topics are discussed: How to derive medial quasigroupsfrom abelian groups (Toyoda's theorem). The relatioship of loops to web geometry. How particular quasigroups - of type (n,k) - are related to affine spaces or affine desarquesian planes (Pucharev's Theorem). How homogeneous quasigroups are related to nearfields. How special classes of medial quasigroups (e.g. the so-called golden section quasigroups) generate parallelogram spaces and various interesting geometric configurations such as parallelograms and trapezoids. Results reached by various authors (R.H. Bruck, N.K. Pucharev, S.K. Stein, J. Šiftar, J. Duplák, V. Volenec, Z.Begovič-Kolář, Krčadinac, Bombardelli etc.) are presented in a unified language and notation, and supplied or completed by perceptions, observations, remarks and v
Czech name
—
Czech description
—
Classification
Type
B - Specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F2707" target="_blank" >GA201/05/2707: Computer-assisted research in Riemannian and affine geometry</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
80-244-1399-X
Number of pages
103
Publisher name
Univerzita Palackého
Place of publication
Olomouc
UT code for WoS book
—