Iterative Image Restoration and the Stopping Criteria
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F07%3A00003608" target="_blank" >RIV/61989592:15310/07:00003608 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Iterative Image Restoration and the Stopping Criteria
Original language description
Digital images can be negatively influenced by several aspects, mostly by camera movement, unfocussed lenses, and noise from the camera sensor. The reconstruction can be done by several reconstruction methods. The methods can be non-iterative such as Wiener reconstruction. The Wiener reconstruction is effective and fast for the most of ordinary images. Unfortunately, some artifacts are visible after the reconstruction. From the iterative methods, the Lucy-Richardson (LR) or blind deconvolution are sometimes used. Iterative algorithms are slower but the results can be usually better. The problem with iterative methods is that the number of iterations needed in order to achieve the image of adequate quality is not known ahead. Our experiments show how tolook for appropriate stopping criteria, and that in case of the LR deconvolution it is possible to find such criteria. The original non-degraded image was not available. The considerations were based on judging of 100 images. The experim
Czech name
Iterative Image Restoration and the Stopping Criteria
Czech description
Digital images can be negatively influenced by several aspects, mostly by camera movement, unfocussed lenses, and noise from the camera sensor. The reconstruction can be done by several reconstruction methods. The methods can be non-iterative such as Wiener reconstruction. The Wiener reconstruction is effective and fast for the most of ordinary images. Unfortunately, some artifacts are visible after the reconstruction. From the iterative methods, the Lucy-Richardson (LR) or blind deconvolution are sometimes used. Iterative algorithms are slower but the results can be usually better. The problem with iterative methods is that the number of iterations needed in order to achieve the image of adequate quality is not known ahead. Our experiments show how tolook for appropriate stopping criteria, and that in case of the LR deconvolution it is possible to find such criteria. The original non-degraded image was not available. The considerations were based on judging of 100 images. The experim
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 11th World Multi-Conference on Systemics, Cybernetics and Informatics
ISBN
1-934272-16-7
ISSN
—
e-ISSN
—
Number of pages
370
Pages from-to
192-196
Publisher name
International Institute of Informatics and Systemics
Place of publication
Orlando, Florida, USA
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
—