Differentiable structures on elementary geometries.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F08%3A00005333" target="_blank" >RIV/61989592:15310/08:00005333 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/09:00005333
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Differentiable structures on elementary geometries.
Original language description
Using Beltrami's differential equation we show that the real affine plane is the only generalized shift R2-planes such that their lines are geodesics with respect to an affine connection. Among the generalized Moulton planes only the Moulton planes admitan affine connections such that their lines are geodesics with respect to it. For Moulton planes we classify to large extent all such connections and determine the corresponding groups of affine mappings.
Czech name
Diferencovatelné struktury v elementárních geometriích
Czech description
Pomocí Beltramiho diferenciálních rovnic se studuje afinní rovina, ve které se zobecněnými translacemi R2-planes generují geodetiky vzhledem některé afinní konexe. Pro Moultonovy roviny se tyto konexe klasifikují a určují se odpovídající grupy afinních transformací.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F2707" target="_blank" >GA201/05/2707: Computer-assisted research in Riemannian and affine geometry</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results of Mathematics
ISSN
1422-6383
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
1-2
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—