Independence of axiom system of basic algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F08%3A00005672" target="_blank" >RIV/61989592:15310/08:00005672 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Independence of axiom system of basic algebra
Original language description
We prove that the axiom system of basic algebras (as given in Chajda I., Emanovský P.: Bounded lattices with antitone involutions and properties of MV-algebras, Discuss. Math., Gen. Algebra Appl. 24 (2004), 31-42) is not independent. The axiom (BA3) canbe deleted and the remaining axioms are shown to be independent. The case when the axiom of double negation is deleted is also treated.
Czech name
Nezávislá axiomatizace basic algeber
Czech description
Je dán nový axiomový systém basic algeber, který obsahuje jen 4 identity. Je dokázáno, že tyto axiomy jsou nezávislé.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing: a fusion of foundations, methodologies and applications
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
5
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—