Monadic Basis Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F08%3A00005677" target="_blank" >RIV/61989592:15310/08:00005677 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Monadic Basis Algebras
Original language description
The concept of monadic MV-algebra was recently introduced by A. Di Nola and R. Grigolia as an algebraic formalization of the many-valued predicate calculus described formely by J. D. Rutledge [9]. This was also generalized by J. Rachůnek and F. Švrček for commutative residuated l-monoids since MV-algebras form a particular case of this structure. Basic algebra serve as a tool for the investigations of much more wide vlase of non-classical logics (including MV-algebras, orthomodular lattices and thein generalizations). This motivates us to introdukce the monadic basic algebra as a common generalization of the mentioned structures.
Czech name
Monadické basic algebry
Czech description
Koncept monadické MV-algebry a monadického residuovaného svazu je zobecněn pro basic algebry a jejich reprezentaci pomocí svazu se sekčními involucemi
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica
ISSN
0231-9721
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—