Total least squares solution for compositional data using linear models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10212158" target="_blank" >RIV/61989592:15310/10:10212158 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Total least squares solution for compositional data using linear models
Original language description
The restrictive properties of compositional data, that is multivariate data with positive parts that carry only relative information in their components, call for special care to be taken while performing standard statistical methods, for example, regression analysis. Among the special methods suitable for handling this problem is the total least squares procedure (TLS, orthogonal regression, regression with errors in variables, calibration problem), performed after an appropriate log-ratio transformation. The difficulty or even impossibility of deeper statistical analysis (confidence regions, hypotheses testing) using the standard TLS techniques can be overcome by calibration solution based on linear regression. This approach can be combined with standard statistical inference, for example, confidence and prediction regions and bounds, hypotheses testing, etc., suitable for interpretation of results.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Statistics
ISSN
0266-4763
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
—
UT code for WoS article
000279209700005
EID of the result in the Scopus database
—